CPAP & CAPNOGRAPHY

Vanessa Bowmaster B.S. EMS, NREMT-P, CCP, FP-C

CPAP

- Continuous Positive Airway PressureGoals:
 - Have an effective way to treat CHF/ COPD
 - Increase functional reserve capacity
 - Eliminate dyspnea/ reduce work of breathing
 - Increase SpO2
 - Decrease the need for intubation/ mortality
- More on FRC
 - Volume of gas remaining in lungs at end-expiration
 - CPAP distends alveoli, preventing collapse on expiration
 - Greater surface are improves gas exchange

HOW CPAP WORKS

• Partial pressure

- "Pressure of a gas mixture is equal to the some of the partial pressures of its consituents"
- 7.5cm H2O CPAP increases the partial pressure of alveolar air and forces more oxygen into the blood.
- Deoxygenated blood has a lower partial pressure of oxygen. Due to a pressure gradient between oxygen in the lungs and that in the blood, O2 from the alveoli moves into the blood.

HOW CPAP WORKS

- Overcomes inspiratory work imposed by autopeep (reduces work of breathing)
- Prevents airway collapse
- Redistribution of intra-alveolar fluid
- Increases transpulmonary and intrathoracic pressure
- Improves lung compliance

CURRENT USERS OF CPAP

• EMS

- Emergency department
- Pre-operative (anesthesia)
- Intensive care
- Recovery room
- General ward
- Many patients also use CPAP at home

CLINICAL INDICATIONS FOR CPAP

- Pulmonary edema
- CHF
- COPD
- Near drowning
- Atelectasis
- Sleep apnea
- ARDS
- o Asthma

CPAP INDICATIONS

• COPD

- Obstructive issue- air impeded from moving through airways. Increased airway resistance causing reduced expiratory airflow rates
 - CPAP Helps relieve obstructive issues- splinting airways
 - Gas exchange issues
 - Muscle tiring?
 - Temporizing treatment
 - Avoid intubation and mechanical ventilation

CPAP INDICATIONS

• Pulmonary edema/ CHF

- Restrictive issue- limited lung expansion, reduced lung volumes secondary to pulmonary edema.
- Fluid due to pressure from blood "backing up" from L side of heart.
- Avoid in heart failure patient if they are already hypotensive- dopamine once normotensive start CPAP
 - CPAP Increases FRC
 - Improves lung compliance
 - Improves arterial blood oxygenation
 - Move fluid vs increase intrathoracic pressure?

CPAP INDICATIONS

• ARDS

- Characteristics
 - Hypoxemia
 - Reduced compliance
 - Large intrapulmonary shunt
- CPAP in early stages may
 - Correct hypoxemia
 - Improve compliance
 - Reduce shunt

• Acute respiratory failure

- Overcomes inspiratory work
- Prevents airway collapse durring exhalation
- Improves ABG values

Fig. 347 Lung tissue has been dissected away to reveal the cause of respiratory failure-nomely. abnormal "Brick"-ula enlargement.

OTHER INDICATIONS

- Drowning
- CO poisoning
- Organophospate poisoning
- Pulmonary infections

CONTRAINDICIATIONS

- Age <8
- Respiratory or cardiac arrest
- Agonal respirations
- Severely depressed LOC
- Systolic BP <90
- S/S of pneumothorax
- Inability to maintain airway
- Trauma (CHI and chest trauma)
- Vomiting
- Airway edema

COMMON COMPLICATIONS WITH CPAP

- Pressure sores
- Gastric distension
- Pulmonary barotrauma (pneumothorax)
- Reduced CO
- Hypoventilation
- Anxiety

COMPLICATIONS

• Address the emotional component

- Claustrophobia is common complaint with CPAP masks
 - Don't give up too early but know when to give up
 - Allow patient to hold the mask
 - When benefits are felt, patients will be inclined to keep the mask on
 - Straps can then be attached as the patient becomes more comfortable
- If the patient will not tolerate the mask don't force them.

COMPONENTS OF A CPAP SYSTEM

- Flow Generator
- CPAP valve
- Mask/ tubing
 - Nebulizer?

APPLICATION

- Start flow to mask
- Attach mask to patient
- Adjust pressure as needed
 - Machine or pressure valve
- Mask should fit much like a BVM fits- over the bridge of the nose and above the chin

COMMON CPAP LEVELS

CPAP Value	Uses
5 cm H2O	Mild pulmonary edema, relative contraindications
7.5 cm H2O	Moderate pulmonary edema, good initial setting
10 cm H2O	Moderate to severe pulmonary edema, significant benefit, most complications.

Normal physiologic PEEP is 3-5cm H2O
CPAP is not cumulative to this number.

BLS CPAP

- Wisconsin first state to address issue
- New Mexico and Pennsylvania followed
- CPAP is being used by BLS crews in some states

CAPNOGRAPHY

- First developed in the 1940's
- During the 1970's it became the standard for Pt ventilation monitoring in the OR
- In the 80's and 90's it moved to the ER and ICU as a means to monitor Pt's status
- Now used in all aspects of patient care, including EMS

PULSE OXIMETRY VS. CAPNOGRAPHY

• Pulse Oximetry

- Measures oxygenation or hemoglobin oxygen saturation
- Can be affected by shock, movement, cold, nail polish, anemia, perfusion, cardiac arrest
- Monitor lag, may take as long as 3-5 min to detect changes in O2
- Pulse oximetry is considered to be a vital sign
- Capnography
 - Measures ventilation
 - You can tell how well your Pt is offloading CO2
 - Cardiac output
 - Fast detection of ventilation changes (apnea)

CO2 PRODUCTION Aerobic metabolism

Anaerobic metabolism does not produce CO2.

HOW DO WE MEASURE ETCO2?

• Colorimetric

- First CO2 detectors used in the field
- Easy to use, disposable
- Uses PH sensitive paper between the ET tube and the BVM
- Only last about 15 minutes
- Inaccurate when exposed to liquids
- Will show presence of CO2, but not quantity
- False negatives during cardiac arrest

CAPNOMETRY VS CAPNOGRAPHY

• Capnometry

- Numeric readout of the CO2 in each breath
- For both non-intubated and intubated patients
- Gives a constant readout of CO2

• Capnography

- A numerical value of the EtCO₂
- A waveform of the concentration of CO₂ present in the airway
- For both non-intubated and intubated patients
- Continuous breath-tobreath monitoring

METHODS OF MONITORING CAPNOGRAPHY

• Side Stream

• Sensor located in a remote unit and CO2 is aspirated via a sampling tube connected to a T-piece adapter.

• Main Stream

- CO2 sensor located between ETT and BVM/ Ventilator.
- Most commonly used on intubated patients
- Faster response

CAPNOGRAPHIC WAVEFORM

• Expired PCO2 versus time (real time vs. trends)

CAPNOGRAPHIC WAVEFORM

- Phase I: exhaled gas from the large airways has PCO2 = 0.
 - Mechanical deadspace
- Phase II: the transition between airway and alveolar gas.
- Phase III: Alveolar gas exchanged. This portion of the waveform is normally flat, but in the presence of V/Q mismatching has a positive slope.
 - The PCO2 value at the end of exhalation is referred to as the end-tidal CO2 (Normal 35-45)
- Phase IV: Onset of inspiration, downward

ABNORMAL WAVEFORMS

• Ventilation

- Hyperventilation, RR increases CO2 decreases
- Hypoventilation, RR decreases CO2 increases
- Bronchospasm, sloped phase II (shark fin)
- Apnea, no wave at all
- Perfusion
 - Cardiac output
 - Decreased perfusion leads to a decrease in CO2
 - Pulmonary embolism
 - Hypovolemia
 - CPR and ROSC

ABNORMAL WAVEFORMS

- Deadspace ventilation
 - Alveoli are perfused, but not ventilated
- o Shunt
 - Alveoli are ventilated, but not perfused
- Metabolic
 - Fever
 - Malignant hyperthermia
 - Tourniquet release
 - Hypothermia
 - Street drugs

ABNORMAL WAVEFORMS

ETCO2 VS PACO2

• End-tidal CO2- partial pressure of CO2 at end of expiration.

- Represents alveolar gas
- Lower than ideal PCO2 because dead space gas dilutes the sample, lowering the reading
- PaCO2- Arterial blood sample
- Healthy patient EtCO2 and PaCO2 are very close with EtCO2 being 2-5mmHg lower.
- A greater discrepancy may appear with a V/Q mismatch.

CAPNOGRAPHY IN EMS

- Gold standard for ETT placement confirmation is waveform capnography.
 - Objective
- Confirm correct placement of ET tube
- Detect changes in ET tube position immediately
- Resuscitation
 - Assess adequacy of chest compressions
 - Detect ROSC
 - Objective data for decision to cease resuscitation
- Optimize ventilation of patients
- ICP patients?

CAPNOGRAPHY IN EMS

• Differential diagnosis of respiratory patient.

After

CAPNOGRAPHY IN EMS

- Monitors the respiratory status
- Respiratory failure
 - Hypoxemic respiratory failure- generally involve fluid filling or collapse of alveolar units (pulmonary edema, pneumonia)
 - PaO2 lower than 60mmHg
 - Hypercapnic respiratory failure- patient is unable to "blow off" CO2 due most commonly to airway disorders (COPD, asthma)
 - PaCO2 higher than 50 mmHg.
 - pH changes?

CAPNOGRAPHY IN EMS

- Check effectiveness of cardiac compressions
- Monitor low perfusion states
- Also useful in DKA cases
 - Respiration rate goes up and EtCO2 goes down
- Pt in metabolic acidosis
 - Correct EtCO2?

"THAT DOESN'T LOOK RIGHT?!"

THANKS!

Questions? Comments?