Neonatal Emergencies and Transport
Relative Anatomy and Physiology
Physiology of Thermoregulation

- Neonate at significant risk of hypothermia
 - Ratio of neonatal body surface area to volume is four times that of an adult
 - Neonate has less adipose tissue than adult
 - Thermogenesis in neonate only one and a half as high as adult
 - Muscle tone is immature in neonate
 - Neonate cannot shiver effectively enough to generate heat
Heat Loss in the Neonate

• Results from:
 – Evaporation
 • Most of heat loss, especially in moments immediately after birth
 – Convection
 • Depends on birthing environment
 • When care providers are comfortable in the room, it is too cold for the neonate
 – Conduction
 – Radiation
 • Room’s ambient temperature should be as close to core temperature as possible
Heat Loss in the Neonate

Convection

Evaporation

Surface

Skin temperature

Radiation

Temperature of base

Conduction
Glucose Requirements

- Newborns at significant risk of acute hypoglycemia due to:
 - Poor glucose stores
 - Inability to stimulate the immature neonatal liver to release glucose
 - Increased metabolism that uses large quantities of available glucose

- Assess neonatal glucose levels within 1 to 2 hours after birth
 - Reassess every 30 minutes to 1 hour thereafter until glucose levels are normal
- Neonate blood glucose levels (BGLs) should be maintained above 70–80 mg/dL
Signs and Symptoms of Hypoglycemia

• Twitching, seizure activity, eye rolling
• Muscular hypotonia (limpness)
• High-pitched cry
• Respiratory apnea, irregular respirations
Management of Hypoglycemia

• Administer 10 percent dextrose as needed at 80ml/kg/day
Airway Anatomy and Physiology

• Unique differences between neonatal and adult airway anatomy and physiology
 – Neonatal tongue larger compared to the oropharynx
 – Little room for airway edema
 – Increased likelihood of airway obstruction in depressed neonate
 – Neonatal trachea more pliable, narrow
 – Airway obstruction from:
 • Hyperextension, hyperflexion kinking
 • Edema
Airway Anatomy and Physiology

- Neonatal epiglottis is large and more U-shaped or oblong, floppy from incomplete cartilaginous support
- Use of straight versus curved blade during laryngoscopy
- Neonatal larynx more cephalad, anterior
- Level of first or second cervical vertebrae
- Harder to achieve single plane view needed for optimal orotracheal intubation conditions
Pulmonary Anatomy and Physiology

• Many differences in neonatal pulmonary anatomy and physiology compared to the adult

• Bones in neonatal thoracic cavity not fully calcified
 – Flexible

• Neonatal ribs are more horizontal than they are rounded
 – Little leverage to increase the anterior and posterior diameter of the chest
 – Inability to provide the degree of lift needed to increase the volume of the chest cavity upon inspiration
Pulmonary Anatomy and Physiology

• Poorly developed accessory muscles
 – Cause diaphragmatic breathing
• Neonatal sternum very pliable
 – Contributes to inability to create a strong negative intrathoracic pressure
 – Inhibits efficiency of inspiratory effort
Pulmonary Anatomy and Physiology

- Neonates have diminished pulmonary reserve capacity
 - Heart larger, ribs and sternum fail to adequately support the lungs
 - Less space for lung expansion compared to adults
 - More rapid development of hypoxemia and hypercapnia

- Neonates are primarily abdominal breathers
 - Rely heavily on diaphragmatic motion to breathe
 - Overcrowding of the neonatal abdominal cavity a significant problem
 - Negatively affects the neonate’s compensatory ventilation mechanisms
 - Limits diaphragmatic excursion secondary to increased abdominal pressure
Pulmonary Anatomy and Physiology

• Neonates consume twice the oxygen of adults
 – Lower pulmonary reserve capacity coupled with a higher metabolic demand for oxygen predisposes the neonate to hypoxemia
Cardiovascular Anatomy and Physiology

- Several differences between adult and neonatal cardiovascular systems
- While still in utero, the fetus receives its oxygen through the placenta
 - Disturbances to alveolar ventilation and gas exchange following birth must be dealt with immediately
Cardiovascular Anatomy and Physiology

• Neonatal heart can usually only increase rate to improve cardiac output
 – Cannot increase contractile force
 – Cardiac output drastically reduced with bradycardia
Cardiovascular Anatomy and Physiology

• Most of physiologic change that occurs with the shift from intrauterine to extrauterine life occurs in the first few minutes after delivery
 – Clamping of umbilical cord moves circulation from placenta to pulmonary system
 – Interruption of low-resistance, placental blood flow from the umbilical cord increases systemic vascular resistance (SVR)
 – Increased SVR closes the ductus venosus
 – Closure of ductus venosus causes renal perfusion
Cardiovascular Anatomy and Physiology

• Neonate’s first breaths expands the lungs
 – Lung expansion reduces pulmonary vascular resistance
 – Reduced pulmonary vascular resistance:
 • Increases pulmonary blood flow
 • Reduces pulmonary artery pressures
 – Left side of heart assumes higher pressures than right
 • Closes the foramen ovale
 • Closes the ductus arteriosus
 – Occurs in first hours to weeks after birth
General Pathophysiology: Pulmonary

• Assessment of respiratory distress
 – Etiology of respiratory compromise may not be readily identifiable
 • First goal is to replace any lost function of the airway or breathing components
 • Once airway or breathing insult is corrected, can identify potential causes of the hemodynamic and/or respiratory compromise
 – Goals in managing respiratory compromise in the critical care environment are to:
 » Identify a set of causes and
 » Treat the patient based on the most likely etiology
Respiratory Distress, Failure, and Arrest

• Must use precise terms when describing respiratory distress, respiratory failure, and respiratory arrest
 – Distinction between the three dictates the management of the acutely ill neonate
 – Respiratory distress
 • Maintains the ability to compensate
 – Respiratory failure
 • Has exhausted compensatory mechanisms
 – Respiratory arrest
 • Patient is apneic
Persistent Pulmonary Hypertension of the Newborn

• Clinical syndrome in which pulmonary vascular resistance is elevated in the presence of changes in pulmonary vessel reactivity
 – Results in sustained fetal circulation
 – Ductus arteriosus and foramen ovale remain open
Persistent Pulmonary Hypertension of the Newborn

• Commonly associated with severe hypoxia, meconium aspiration syndrome, and congenital diaphragmatic hernia

• Clinical presentation mirrors many of the signs and symptoms of congenital heart diseases
 – May be difficult to assess in the aeromedical or ground transport environment
Persistent Pulmonary Hypertension of the Newborn

• Management
 – Maintain oxygenation
 – Give nitric oxide
 • Promotes pulmonary vascular dilation
 • Keeps pulmonary perfusion pressures closer to normal
 • Closes vascular structures
 – Use adenosine, magnesium sulfate as pulmonary vasodilators
Meconium Aspiration Syndrome

• Meconium expelled prematurely in 10 to 15 percent of all deliveries
 – Only 2 to 10 percent will aspirate meconium into lower airways

• Meconium aspiration can obstruct airway and/or may contribute to inactivation of alveolar surfactant

• No known prevention strategies
 – Nasopharyngeal and endotracheal suctioning before delivery of the thoracic cavity may limit meconium aspiration into the lower airways
Meconium Aspiration Syndrome

Following delivery

After delivery of the infant, if a great deal of meconium is present, the trachea should be intubated and any residual meconium removed from the lower airway.
Transient Tachypnea of the Newborn (TTN)

- Also known as “wet lung” or “Type II Respiratory Distress Syndrome”
- Self-limiting process
 - Auto-resolves within 48–72 hours from birth
 - Caused by delayed clearing of fluids in the lungs
- Management
 - Ensure adequate oxygenation
 - Give antibiotic therapy until sepsis, pneumonia ruled out
Infant Respiratory Distress Syndrome (IRDS)

- Affects about 10 percent of all preterm infants
 - Rarely seen in full-term infants
- Result of lack of pulmonary surfactant
 - Causes atelectasis
 - Increased work of breathing
 - Ineffective gas exchange
 - Hypoxia, hypercapnia

Courtesy of Carol Harrigan, RNC, MSN, NNP
Infant Respiratory Distress Syndrome (IRDS)

• Signs and symptoms include:
 – Tachypnea, shortness of breath
 – Accessory muscle use, sternal retractions, grunting, nasal flaring
 – Respiratory arrest from muscle fatigue, hypoxemia, and acidosis

• Management
 – Ensure adequate ventilation and oxygenation
 – Administer exogenous surfactant
Congenital Diaphragmatic Hernia

• Complication in which the bowel protrudes into the thoracic cavity through an interruption of the diaphragm
 – Usually the result of congenital abnormality
 – 85 percent of all congenital diaphragmatic hernias occur on left side
 – Mortality rate between 40 and 60 percent

• Herniated abdominal contents prevent full lung expansion in the affected hemithorax
 – Pulmonary compromise ensues
Congenital Diaphragmatic Hernia

• Signs and symptoms
 – Respiratory distress
 – Unequal lung sounds
 – Scaphoid shaped abdomen

• Management
 – Ensure adequate ventilation and oxygenation
 – Insert NG tube
 – Conduct gastric decompression
 – Repair surgically (definitive treatment)
 – General pathophysiology, cardiovascular
Congenital Heart Disease Overview

• Incidence of congenital heart disease in the United States is approximately 8 per 1,000 live births
 – About 40,000 neonates born each year with a heart defect
 • Many congenital heart defects are subclinical
 • Defects can cause:
 – Abnormalities in volumes and/or pressures in the atria or ventricles
 – Mixing of venous and arterial blood
 – Inadequate cardiac output and poor systemic perfusion
 • Neonate can have multiple defects at once
Left-to-Right Shunt Defects

• Condition in which oxygenated blood shifts from left to right side of the heart

• Defect is considered acyanotic
 – Higher pressures on left side of heart prevent unoxygenated blood from right side from entering the aorta and systemic circulation
Atrial Septal Defect (ASD)

• Commonly the result of foramen ovale nonclosure
 – “Patent” foramen ovale
 – Oxygenated blood from pulmonary vein enters left atria
 – Higher left atrial pressure compared to right produces volume shift to right side
 – Eventually causes right atrial and ventricular enlargement

Acyanotic
Atrial Septal Defect (ASD)

- Signs and symptoms
 - Commonly subclinical
 - Clinical significance related to size of defect
 - Rarely, congestive heart failure might develop
- Management
 - Give supportive care
 - Repair surgically (definitive treatment)
Atrial Septal Defect (ASD)

Acyanotic
Ventricular Septal Defect (VSD)

- Defect in ventricular septum allows blood flow between ventricles
 - Can cause:
 - Left-to-right shunting of blood
 - Pulmonary hypertension
 - Changes in pulmonary vascular bed
 - Size of defect determines clinical significance

Acyanotic
Small VSD

• Produces a small, left-to-right shunt
• Little pulmonary vascular congestion, chamber enlargement
• More difficult to diagnose
Large VSD

- Pulmonary hypertension develops
- Signs of left ventricular overload, congestive heart failure develop
- Can present early or late
 - Early presentation typified by global ventricular enlargement
 - Late presentation typified by equal left-to-right and right-to-left shunting/mixing of blood
- Result of equal/near-equal PVR and SVR

Acyanotic
Signs and Symptoms of VSD

- Respiratory distress, fatigue, diaphoresis at feedings
- History of poor weight gain or weight loss
- Congestive heart failure
Management of VSD

• Ensure adequate oxygenation
• Treat congestive heart failure, when present
• Repair surgically (definitive treatment)
VSD

Ventricular septal defect

Acyanotic
Patent Ductus Arteriosus (PDA)

- Condition characterized by failure of the ductus arteriosus to close after pulmonary circulation has been established
 - PDA allows for flow of blood from aorta to pulmonary artery
 - Causes:
 - Pulmonary hypertension
 - Myocardial hypertrophy
 - Size of defect, amount of blood flow determines clinical significance

Acyanotic
Patent Ductus Arteriosus (PDA)

• Signs and symptoms
 – Difficulty breathing, tachypnea, tachycardia
 – Bounding pulses, widening pulse pressures, fatigue at feedings

• Management
 – Give supportive care
 – Administer aldomethacin
 – Use prostaglandin inhibitor
Patent Ductus Arteriosus (PDA)
Obstructive Defects

• Overview
 – Complete or partial blockage of blood flow commonly caused by a structural deformity
 – Signs and symptoms are secondary to the cardiovascular structures involved
Aortic and Pulmonary Stenosis

• Aortic or pulmonary valve narrowed
 – Blood flow impeded
 – Ventricular pressure increased
 – Ventricles enlarged
 – Poststenotic vessel dilation evident

• Signs and symptoms
 – Respiratory distress, tachypnea, tachycardia
 – Weak pulses, hypotension, and fatigue at feedings
Aortic and Pulmonary Stenosis

• Management
 – Give supportive care
 – Conduct oxygenation
 – Proceed with pharmacologic management
 – Undertake balloon angioplasty/valvuloplasty
Aortic and Pulmonary Stenosis
Coarctation of the Aorta

- Characterized by narrowing of the aorta near the distal aspect of the aortic arch
 - Increased left ventricular pressures
 - Increased left ventricular workload
 - Left ventricular hypertrophy
- Signs and symptoms
 - Tachycardia
 - Bounding pulses in the upper extremities with thready or absent pulses in the lower extremities
 - Fatigue at feedings
Coarctation of the Aorta

• Management
 – Give supportive care
 – Administer prostaglandin
 – Treat congestive heart failure, when present
 – Complete balloon angioplasty/surgical resection (definitive treatment)
Coarctation of the Aorta

Obstructive
Cyanotic Defects

- Characterized by poor pulmonary blood flow resulting from one or more of the following:
 - Difficulty in pumping blood out the right side of the heart
 - Greater pressure gradient from right to left side of the heart that shunts blood to left side
 - Returns unoxygenated blood to the left side
 - Blockage of pulmonary blood flow or structural deformity
Complete Transposition of the Great Vessels (TGV)

- Characterized by abnormal positioning of the aorta and pulmonary arteries
 - Pulmonary artery leaves the left ventricle
 - Aorta leaves the right ventricle
 - Creates parallel circulations

Cyanotic
Complete Transposition of the Great Vessels (TGV)

- Associated with ASD, VSD, and PDA up to 80 percent of the time and has to be for the patient to survive
 - Without these defects, no intracardiac mixing of oxygenated and deoxygenated blood occurs, child dies due to closed parallel circuits
 - Degree of cyanosis/acidosis depends on number and size of intracardiac and extracardiac shunts
Complete Transposition of the Great Vessels (TGV)

- Signs and symptoms
 - Difficulty breathing, tachypnea, tachycardia
 - Cyanosis

- Management
 - Give supportive care
 - Repair surgically via arterial switch (definitive treatment)
Complete Transposition of the Great Vessels (TGV)

Cyanotic
Tetralogy of Fallot

- Condition characterized by four criteria:
 - VSD
 - Pulmonary stenosis
 - Rightward displacement of aorta
 - Overrides the VSD
 - Right ventricular hypertrophy

Cyanotic
Tetralogy of Fallot

- Degree of cyanosis secondary to mixing of oxygenated/deoxygenated blood determined by degree of pulmonary stenosis
 - Greater the pulmonary stenosis, the greater the right side intraventricular pressure, the greater the right-to-left shunt, the more deoxygenated blood reaching systemic circulation via the aorta
Tetralogy of Fallot

• Signs and symptoms
 – Tachypnea, tachycardia
 – Fatigue at feedings

• Management
 – Give supportive care
 – Ensure adequate oxygenation
 – Administer prostaglandin
Tetralogy of Fallot

Cyanotic
Transport Guidelines for Congenital Heart Defects

- Ensure patent airway
- Ensure adequate ventilation, oxygenation
- Treat congestive heart failure
- Correct circulatory compromise
 - Conduct fluid volume resuscitation
 - Administer vasopressors
- Keep patient warm
General Pathophysiology:
Other Neonatal Emergencies
Necrotizing Enterocolitis (NEC)

- Most common serious abdominal emergency in neonates that requires emergency surgical intervention
 - Acute inflammation of the large intestine leading to necrosis of the intestinal mucosa
 - Risk factors include insult to intestinal mucosa and bacterial growth
 - Causative agent has not been identified
 - Risk of sepsis secondary to bowel perforation
Necrotizing Enterocolitis (NEC)

• Signs and symptoms
 – Abdominal distention
 – Decreased or absent bowel sounds
 – Vomiting
 – Bloody diarrhea
 – Lethargy
 – Poor feeding habits
 – Depressed core body temperature
Necrotizing Enterocolitis (NEC)

- Management
 - Give supportive care
 - Keep the patient NPO
 - Insert NG tube and conduct gastric decompression
 - Maintain acid-base and electrolyte balance
 - Maintain IV fluids
 - Administer antibiotic therapy
Sepsis

- Life-threatening infection of the bloodstream resulting in systemic toxicity
 - Often subtle in neonate and may be difficult to distinguish from a noninfectious pathology
 - Maternal gastrointestinal or genital infections are most common etiology
 - Primary site of infection may often be difficult to identify
 - Shock may develop
 - Result of vasodilation secondary to release of bacterial endotoxins
 - Distributive shock
Sepsis

• Signs and symptoms
 – Hypothermia
 – Respiratory distress
 – Pulmonary hypertension
 – Hypoxemia
 – Severe hypoperfusion
 – Disseminated intravascular coagulation (DIC)
Sepsis

1. Endotoxin released by microorganisms sets off an out-of-control inflammatory process

2. Macrophage producing cytokines

3. Vasodilation with increased capillary permeability and fluid leak

4. Neutrophils arrive and multiply occluding capillaries
Sepsis

• Management
 – Give supportive care
 – Ensure cardiovascular support
 – Administer antibiotic therapy
General Neonatal Assessment
Findings/Considerations
Skin Color

• Cyanosis commonly found
 – Insignificant when neonate is crying

• Jaundice
 – Result of high serum bilirubin levels
 – Usually resolves without intervention
 • When needed, treat with fluorescent light
 • Blood transfusion needed when fluorescent light treatment fails
Vital Signs

• Neonatal vital signs variable, deviate from “norm”

• Access to reference material advisable
 – Pediatric Broselow tape

• In addition to respiratory rate, blood pressure, heart rate, consider blood glucose level a vital sign in neonate
 – 70–80 mg/dL considered nonhypoglycemic
General Neonatal Considerations
Airway

• Should be secured and maintained as soon as possible
 – RSI less common in adults but should be used when needed

• Accidental extubation most frequent respiratory complication
 – Sedation
 – NMBAs
 – C-collars
 – Lateral immobilization
Vascular Access

• Obtaining vascular access can be difficult even for experienced providers
• Multiple access options should be available
 – IV, IO, umbilical routes
Temperature Regulation

• Critical, should be consistently ensured during transport

• Temperature regulation initially provided by preventing heat loss while promoting strategies for aggressive warming
 – Before transport use:
 • Radiant warmers
 • Insulated blankets
 • Heated blankets
 – During transport:
 • Transport incubator/isollette
Hypoglycemia

• Hypoglycemia should be managed aggressively
 – Use 10 percent dextrose and water
 • Infuse D10W at 80cc/kg/day
 – D25W, D50W administration contraindicated
 – Can cause significant increases in plasma osmolarity
 – Hypernatremia
 • Cerebral edema
Summary

• Common denominator for unexpected deaths in neonates is hypoxia
 – Via infectious diseases, congenital heart disease, pulmonary compromise, other etiologies
 – Neonates can compensate until they are extremely hypoxic
 • High index of suspicion needed to identify developing hypoxia before decompensation
 – Airway and ventilation highest priority
 • Neonates with high metabolism, high oxygen consumption
Summary

• Manage CHD after addressing airway, breathing, and pulmonary function
 – Transport care for the CHD patient is primarily supportive
 – May require significant intervention

• Ability to diagnose specific defects not top concern
 – Critical care practitioner should know how various defects affect normal perfusion
 – Care provider is responsible for staying abreast of common neonatal emergencies and their current standards of care