
Vanessa Bowmaster B.S. EMS, NREMT-P, CCP, FP-C

"A rude unhinging of the machinery of life"

"A brief pause in the act of dying"

Defined: Inadequate Tissue Perfusion

Inadequate peripheral perfusion leading to failure of tissue oxygenation ⇒may lead to anaerobic metabolism

- Homeostasis
 - cellular state of balance
 - perfusion of cells with oxygen is one of its cornerstones

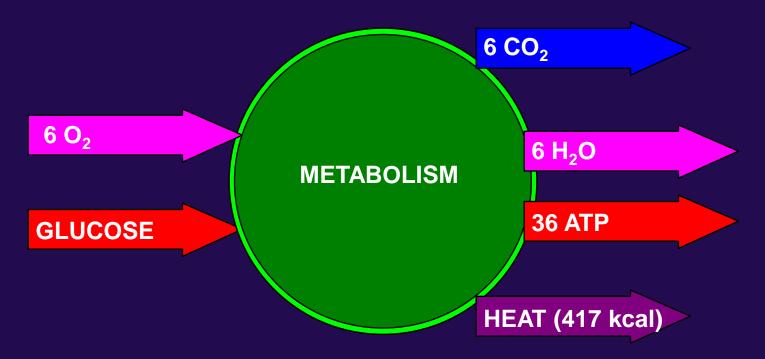
Adequate Cellular Oxygenation

 Red Cell Oxygenation
 Red Cell Delivery To Tissues

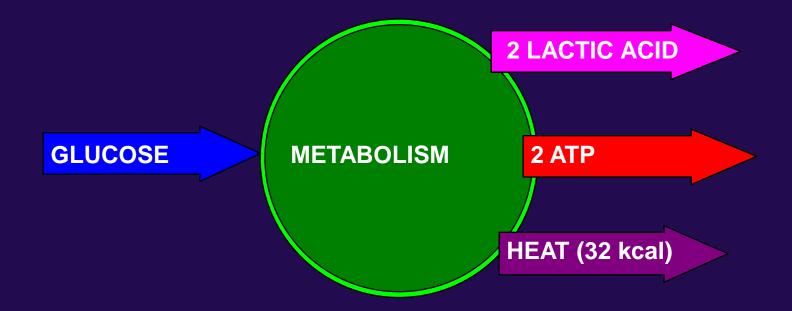
Fick Principle

Air's gotta go in and out. Blood's gotta go round and round.

Any variation of the above is not a good thing!

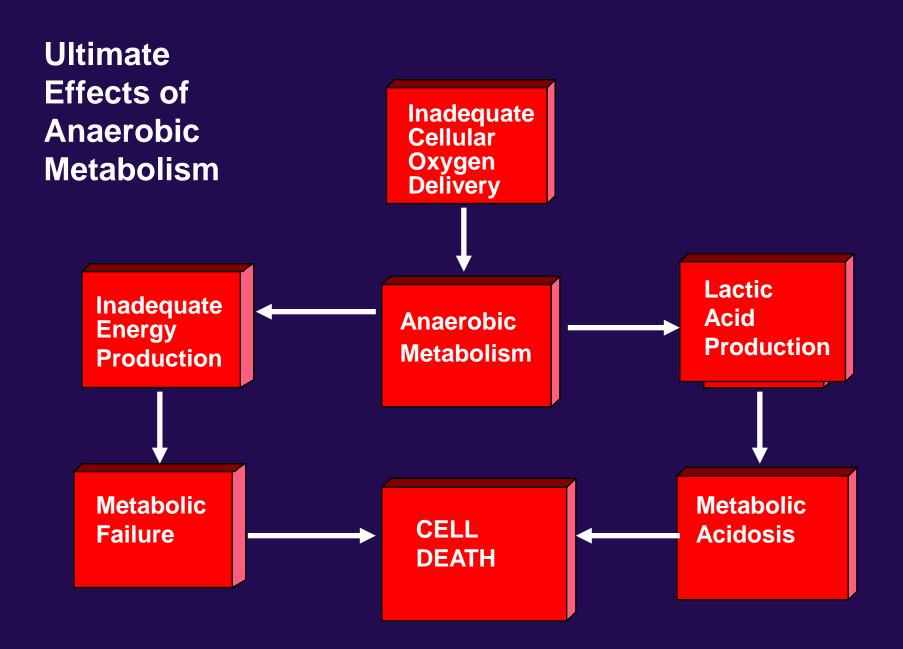

- Red Cell Oxygenation
 - -Oxygen delivery to alveoli
 - Adequate F_iO₂
 - Patent airways
 - Adequate ventilation

- Red Cell Oxygenation
 - -Oxygen exchange with blood
 - Adequate oxygen diffusion into blood
 - Adequate RBC flow past alveoli
 - Adequate RBC mass/Hgb levels
 - Adequate RBC capacity to bind O₂
 - -pH
 - Temperature


- Red Cell Delivery To Tissues
 Adequate perfusion
 - Blood volume
 - Cardiac output
 - Heart rate
 - Stroke volume (pre-load, contractility, afterload)

Inadequate oxygenation or perfusion causes: Inadequate cellular oxygenation Shift from aerobic to anaerobic metabolism

AEROBIC METABOLISM


ANAEROBIC METABOLISM

Glycolysis: Break down of glycogen in the liver when the body is in anaerobic metabolism. Inefficient source of energy production; 2 ATP for every glucose; produces ketones and acid

Anaerobic Metabolism

- Occurs without oxygen
 - glycolysis can occur without oxygen
 - cellular death leads to tissue and organ death
 - can occur even after return of perfusion
 - \Rightarrow organ or organism death

Maintaining perfusion requires:

- Volume
- Pump
- Vessels

 Failure of one or more of these causes shock

• Hypovolemic Shock = Low Volume

Trauma
Non-traumatic
blood loss
GI
GU
Vaginal
Burns
Diarrhea

-Vomiting
-Diuresis
-Sweating
-Third space losses
•Pancreatitis
•Peritonitis
•ascites

• Cardiogenic Shock = Pump Failure

Acute MICHFBradyarrhythmiasTachyarrhythmias

-Mechanical obstruction

- ♦ Cardiac tamponade
- Tension pneumothorax
- Pulmonary embolism

- Vasogenic (distributive) Shock = Low Resistance
 - Spinal cord trauma
 - neurogenic shock
 - Depressant drug toxicity
 - Simple fainting

- Mixed Shock
 - -Septic Shock
 - Overwhelming infection
 - Inflammatory response occurs
 - Blood vessels
 - Dilate (loss of resistance)
 - Leak (loss of volume)

- Mixed Shock
 - -Septic Shock
 - Fever
 - Increased O₂ demand
 - Increased anaerobic metabolism
 - Bacterial toxins
 - Impaired tissue metabolism

Mixed Shock

-Anaphylactic Shock

- Severe allergic reaction
- Histamine is released
- Blood vessels
 - Dilate (loss of resistance)
 - Leak (loss of volume)
- Extravascular smooth muscle spasm
 - Laryngospasm
 - Bronchospasm

- Progressive syndrome
- Three phases
 - Compensated
 - Decompensated
 - Irreversible

Signs and symptoms due to:

 Hypoperfusion
 Compensatory responses

- Baroreceptors detect fall in BP – Usually 60-80 mm Hg (adult)
- Sympathetic nervous system activates
 - What are the primary SNS
 Neurotransmitters & their effects?
 - ACh
 - Epi Norepi

- Cardiac effects
 - Increased force of contractions
 - Increased rate
 - Increased cardiac output

- Peripheral effects
 - Arteriolar constriction
 - Pre-/post-capillary sphincter contraction
 - Increased peripheral resistance
 - Shunting of blood to core organs

- Decreased renal blood flow
 - Renin released from kidney arteriole
 - Renin & Angiotensinogen combine
 - Converts to Angiotensin I
 - Angiotensin I converts to Angiotensin II
 - Peripheral vasoconstriction
 - Increased aldosterone release (adrenal cortex)
 - promotes reabsorption of sodium & water

- Decreased blood flow to hypothalamus
- Release of antidiuretic hormone (ADH or Arginine Vasopressin) from posterior pituitary
 - Retention of salt, water
 - Peripheral vasoconstriction

- Insulin
 - \Downarrow secretion caused by epinephrine
 - contributes to hyperglycemia
- Glucagon
 - \Uparrow release caused by epinephrine
 - promotes liver glycogenolysis & gluconeogenesis
 - Body's releasing glycogen stores to produce glucose.

- Peripheral capillaries contain minimal blood
- Stagnation
- Aerobic metabolism changes to anaerobic
- Extracellular potassium shifts begin

- Presentation
 - -Restlessness, anxiety
 - Earliest sign of shock
 - -Tachycardia
 - Bradycardia in cardiogenic, neurogenic

- Presentation
 - Normal BP, narrow pulse pressure
 - Falling BP = late sign of shock
 - Mild orthostatic hypotension (15 to 25 mm Hg)
 - "Possible" delay in capillary refill

- Presentation
 - -Pale, cool skin
 - Cardiogenic
 - Hypovolemic
 - -Flushed skin
 - Anaphylactic
 - Septic
 - Neurogenic

- Presentation
 - Slight tachypnea
 - Respiratory compensation for metabolic acidosis

- Presentation
 - Nausea, vomiting
 - Thirst
 - Decreased body temperature
 - Feels cold
 - Weakness

Decompensated Shock

- Presentation
 - Cardiac Effects
 - Decreased RBC oxygenation
 - Decreased coronary blood flow
 - Myocardial ischemia
 - Decreased force of contraction

Decompensated Shock

- Presentation
 - Peripheral effects
 - Relaxation of precapillary sphincters
 - Continued contraction of postcapillary sphincters
 - Peripheral pooling of blood
 - Plasma leakage into interstitial spaces

Decompensated Shock

- Presentation
 - Peripheral effects
 - Continued anaerobic metabolism
 - Continued increase in extracellular potassium
 - Rouleaux formations of RBCs
 - "pile up like coins"
 - Cold, gray, "waxy" skin

Decompensated Shock

- Presentation
 - Listlessness, confusion, apathy, slow speech
 - Tachycardia; weak, thready pulse
 - Decreased blood pressure
 - Moderate to severe orthostatic hypotension
 - Decreased body temperature
 - Tachypnea

- Post-capillary sphincter relaxation
- Loss of peripheral vascular resistance

- Washout of accumulated products
 - Hydrogen ion
 - Potassium
 - Rouleaux formations
 - Carbon dioxide
- Systemic metabolic acidosis occurs
- Cardiac Output decreases further

- Presentation
 - Confusion, slurred speech, unconscious
 - Slow, irregular, thready pulse
 - Falling BP; diastolic goes to zero
 - Cold, clammy, cyanotic skin
 - Slow, shallow, irregular respirations
 - Dilated, sluggish pupils
 - Severely decreased body temperature

- Irreversible shock leads to:
 - Renal failure
 - Hepatic failure
 - Disseminated intravascular coagulation (DIC)
 - Multiple organ systems failure
 - Adult respiratory distress syndrome (ARDS)
 - Death

Disseminated Intravascular Coagulation (DIC)

- Decreased perfusion causes tissue damage/necrosis
- Tissue necrosis triggers diffuse clotting
- Diffuse clotting consumes clotting factors
- Fibrinolysis begins
- Severe, uncontrolled systemic hemorrhage occurs

Adult Respiratory Distress Syndrome (ARDS)

- AKA: "Shock Lung"
- Decreased perfusion damages alveolar and capillary walls
- Surfactant production decreases
- Fluid leaks into interstitial spaces and alveoli
- Gas exchange impaired
- Work of breathing increases

Key Issues In Shock

- Tissue ischemic sensitivity
 - Heart, brain, lung: 4 to 6 minutes
 - GI tract, liver, kidney: 45 to 60 minutes
 - Muscle, skin: 2 to 3 hours

Resuscitate Critical Tissues First!

Key Issues In Shock

 Recognize & Treat during compensatory phase

Restlessness, anxiety, combativeness = Earliest signs of shock

Best indicator of resuscitation effectiveness = Level of Consciousness

Key Issues In Shock

- Falling BP = LATE sign of shock
- BP is **NOT** same thing as perfusion
- Pallor, tachycardia, slow capillary refill = Shock, until proven otherwise

- Airway
 - Open, Clear, Maintained
 - Consider Intubation

- High concentration oxygen
 Oxygen = Most Important Drug in Shock
- Assist ventilation as needed
 - When in Doubt, Ventilate
 - BVM
- Decompress Tension Pneumothorax

- Establish venous access
 - Replace fluid
 - Give drugs, as appropriate
 - Don't delay definitive therapy
- Maintain body temperature
 - Cover patient with blanket if needed
 - Avoid cold IV fluids

Monitor

- Mental Status
- Pulse
- Respirations
- Blood Pressure
- ECG

Hypovolemic Shock

- Control severe external bleeding
- Elevate lower extremities
- Avoid Trendelenburg

Hypovolemic Shock

- Fluid Resuscitation aimed at permissive hypotension
- 2 Large Bore IV's of NS or LR
- Maintain BP of 90 mmHg
- Some EMS Systems still aim for BP of 100 systolic for fluid resuscitation

 Not current ACS recommendation

Permissive Hypotension Physiology

- Body has several protective measures with BP at this level
- Increasing BP causes more rapid blood loss
- Increasing BP may cause clot to dislodge increasing more bleeding

 Especially if bleeding has stopped
- Still being researched

Hypovolemic Shock

- Do <u>NOT</u> delay transport
- Start IVs enroute to hospital

Where does stabilization of critical trauma occur?

Cardiogenic Shock

- Supine, or head and shoulders slightly elevated
- Do <u>NOT</u> elevate lower extremities

Cardiogenic Shock

- Keep open line, micro-drip set
- Fluid challenge based on cardiovascular mechanism and history
 - Titrate to BP ~ 90 mm Hg

Cardiogenic Shock

- Treat the underlying cause if possible
- Treat rate, then rhythm, then BP
 Orrect bradycardia or tachycardia
 Orrect irregular rhythms
 Treat BP
 - Cardiac contractility
 - Dobutamine, Dopamine
 - Peripheral resistance
 - Dopamine, Norepinephrine

Obstructive Shock

-Treat the underlying cause

- Tension Pneumothorax
- Pericardial Tamponade
- Isotonic fluids titrated to BP w/o pulmonary edema
- -Control airway
 - Intubation

Shock Management

Avoid vasopressors until hypovolemia ruled out, or corrected

Shock Management

Squeezing partially empty tank can cause ischemia, necrosis of kidney and bowel

- Consider need to assist ventilations
- Patient supine; lower extremities elevated
- Avoid Trendelenburg

- Infuse isotonic crystalloid — "Top off tank"
- Consider possible hypovolemia
- Consider vasopressors
 - Dopamine
 - Levophed preferred for septic shock
 - or Phenylephrine (Neo-synephrine)
 - Rarely Epi drips

- Maintain body temperature
- Hypothermia may occur

- Anaphylaxis
 - Suppress inflammatory response
 - Antihistamines
 - Corticosteroids
 - Oppose histamine response
 - Epinephrine
 - bronchospasm & vasodilation
 - Replace intravascular fluid
 - Isotonic fluid titrated to BP ~ 90 mm

Shock in Children

- Small blood volume
 Increased hypovolemia risk
- Very efficient compensatory mechanisms

-Failure may cause "sudden" shock

 Pallor, altered LOC, cool skin = shock UPO

Shock in Children

- Avoid massive fluid infusion

 Use 20 cc/kg boluses

 High surface to volume ratio
 - –Increased hypothermia risk

Shock in the Elderly

- Poor cardiovascular condition
 - Rapid decompensation
- Sepsis more likely
- Hypoperfusion can cause:
 - CVA
 - AMI
 - Seizures
 - Bowel Infarctions
 - Renal failure

Shock in the Elderly

- Assessment more difficult
 - Peripheral vascular disease
 - Weak pulses
 - Altered sensorium
 - Hypertension masking hypoperfusion
 - Beta-blockers masking hypoperfusion
- Fluid infusion may produce volume overload/CHF

Shock in OB Patients

- Pulse increases 10 to 15 bpm
- BP lower than in non-pregnant patient
- Blood volume increased by 45%
 - Slower onset of shock signs/ symptoms
- Fluid resuscitation requires greater volume

Shock in OB Patients

- Oxygen requirement increased 10 to 20%
- Pregnant uterus may compress vena cava, decreasing venous return to heart
 - Place women in late-term pregnancy on left-side
- Fetus can be in trouble even though mother looks well-perfused

Transport Considerations

- Indications for Rapid Transport
- Indications for Trauma Center Transport
- Considerations for Air Medical Transport

• Questions?