Landmines

Legacy of Death

PRAIRIES: OUR WINDOW ON THE WORLD

THE CREIGHTON INSTITUTE: PREPARING PEOPLE FOR A CHANGING WORLD

DR. AL SCHLESINGER: A CREIGHTON INSTITUTION
It was hot for September, and the wind was blowing, blowing — as it always does in the Sandhills. Between gusts, you could hear the crickets singing.

The heat shimmered off the land, the temperature hovering around 90.

As I climbed to a ridge to give the place a good look, I saw sunflowers, though near the end of their season, and sharp century plants like little swords, and what looked to me to be a small, silver-grey sage. But there were dozens more I didn't know: Little, bright purple bushes; a small, orange shrub that seemed poised to take flight like a tumble weed; a smoky-tan grass blowing like dust; surprisingly blue little stars nodding from grassy stems.

At every blowout (where the wind finally has won over the grass and sent the Sandhills flying, making the land look a little like a sandtrap), I looked for what I imagined Nebraska's only endemic plant might look like, the blowout penstemon.

Here and there were glimpses of bright green, the pot-holes of the short-grass prairie, full of birds.

When I reached the top of one of the highest hills, I swept my eyes as far as I could see in all directions: “This is it,” I thought. “This is Mary Ann’s prairie, 360 degrees of it. Land that has never known the plow.”

When Creighton's Dr. Mary Ann Vinton was a little girl in the Sandhills in the ’60s and ’70s, these grasslands were her playground. Familiar, plain, they cradled her childhood; they surrounded her two-room school, where five out of 12 classmates were her siblings. “And most of the time, I was the only kid in my grade,” she remembers with a laugh.

Out here, in constant company with the wind, landmarks are etched sharply. A schoolhouse, a church, a windmill, a river, and, settled by her great, great grandparents, Mary Ann’s childhood ranch. In fact, the ancestral stationery read, “Swiggart Ranch: Headwaters of the Dismal River.”

“They were proud of the place,” Vinton says, “and wanted everyone to know about the river.” But the sci-
AIRIES
Window on the World
by Pamela Adams Vaughn
entist in her can’t resist adding, “It was actually the North Fork of the Dismal.”

Memories here are boldly etched, as well. Vinton’s include strong childhood images of her mother.

Left a widow when Mary Ann was 3, her mother, also called Maryann, was expecting twin babies at the time of her husband’s death. Still, she “ran our ranch and (by dint of her volunteerism) the local school.” Her roots in a family of Irish immigrants, Mrs. Vinton single-handedly raised 11 children; the Creighton botanist is third youngest.

Another strong memory is that of her sixth-grade teacher from Indiana, “my window on the world. The Sandhills, always just part of the ‘background’ of my childhood, were unique in my teacher’s eyes.” Suddenly, the vista from her two-room school south of Whitman, Neb., took on a different look. “She made me see the Sandhills ... and our lives as ranch kids — as something special,” Vinton says of her early mentor, Bobbie Poole.

Young Mary Ann was assigned by the same teacher to read Michener’s just-published “Centennial,” which, she says, gave her “a sense of the history and context of a place very much like mine.”

Her high school years in Cañon City, Colo., at St. Scholastica Academy were marked by more great teachers, including several scientists. What’s more, the school’s block system of instruction enabled students to immerse themselves in coursework for nearly a month at a time. A block ecology course “crystallized some vague affinities I already had,” Vinton remembers. It was then she knew she wanted to be an ecologist.

The distant, all-female school also did more “good things I’m just starting to realize,” she adds. “In a girls’ school, girls are expected to take charge. Someone has to be class president, and that someone has to be a girl.”

Her mother and her teachers had left their mark. And so had the Sandhills, although Vinton says she didn’t know it at the time. Leaving the family ranch for high school at 15, she would not return to live in Nebraska until she was 31.

Vinton is Creighton’s second holder of the Clare...
Boothe Luce Faculty Chair for Women in Science and the third botanist in the University’s history. As a grassland ecologist, her focus is discovering just what makes these biomes “tick.” As faculty chair, she is role model to dozens of Creighton’s women students seeking careers in science.

Her research is supported by the National Science Foundation, and her current work “all revolves around how plants interact with soils in grasslands ... and how herbivores get involved in cycling nutrients from plants to soils.” Vinton collaborates with colleagues at Kansas State and Colorado State universities, and she calls her undergraduate students at Creighton “integral to my research.” Each summer, two or three students keep busy in her lab.

One of Vinton’s current projects deals with how soil fertility mediates the invasion of Bromus inermis (smooth brome, a non-native grass) in tallgrass prairie preserves. She focuses her work at Allwine Prairie, which lies on Omaha’s western outskirts. Together with former and current Creighton undergraduates Erin Goergen, Mary Heffron, Corey Rife, Emily Kathol and Dan Deatch, Vinton’s research is showing how this Eurasian exotic, introduced to help control soil erosion and provide another source of forage, is pushing out native plants. Their work shows that the invasive species can be controlled by diminishing soil nitrogen. By simply adding straw or sawdust to the soil, preserve managers can select for native species. Keeping a variety of native species preserves biodiversity, which adds to the resiliency of natural areas, to the benefit of the planet.

Another area of inquiry explores how large herbivores — such as bison — affect the cycling of nutrients through grassland ecosystems. Vinton says that up to 80 percent of “the annual above-ground plant biomass exchange, the prairie grasses provide carbon for the fungus life cycle. Together with Creighton environmental science students Kathol and Kristin Eickhorst, Vinton has shown that the fungus is widespread in populations of a native tallgrass prairie species called Elymus canadensis (Canada wild rye). Showing just how effective the fungus is in deterring herbivores — and perhaps even slowing decomposition by microbes — is the next step of the project. These interactions, between small things like bacteria and fungi and large things like plants, are under-studied, Vinton says. There may be millions of these interactions, holding together life on the planet, that we know nothing about.

A third area of inquiry explores how large herbivores — such as bison — affect the cycling of nutrients through grassland ecosystems. Vinton says that up to 80 percent of “the annual above-ground plant biomass...
Like Creighton botanist Dr. Mary Ann Vinton, the blowout penstemon (*Penstemon haydenii*) is a native of Nebraska’s Sandhills. On the endangered species list, it is the rarest native Great Plains plant.

In fact, this blue-to-lavender flowering plant resides only in the blowouts that form in Nebraska’s Sandhills — and nowhere else on Earth.

According to James Stubbendieck, Ph.D., of the University of Nebraska-Lincoln, even its flowers are distinctive: The blowout species is one of only two penstemons worldwide that are fragrant, its soft pastel spring blossoms smelling of lavender or vanilla.
in grasslands is consumed by herbivores, the majority of which are large grazers, including bison and domestic livestock.” In most other terrestrial ecosystems, herbivores typically consume less than 10 percent of the plant biomass. Why this huge difference? Her work, together with that of colleagues at Kansas State University, shows that the lives of other plants and animals may actually depend on grazing.

Considering her formative years in Nebraska’s Sandhills (actually mixed short and tallgrass prairie!), Vinton’s career selection of grassland ecology is not surprising. When it came to selecting a specialty, “grasslands made sense to me,” she says. “Plants are the base of the food chain. And grasslands are the major habitat and food for many animals, including humans. I see grasslands as a good, fundamental unit.”

For Vinton, the plains’ subtlety appeals to her, as well. “Up to 80 percent of the biomass is in the soil,” she says, making grasslands seem less than they really are. To the newcomer, they may look on the surface “a little like vacant lots!” But, Vinton says, thinking of them more as “upside down forests” offers a truer picture, their “biomass buried in the soil, rather than towering overhead.”

Do her students have trouble grasping this subtle beauty and purpose?

Still, when she gets the students out of the city on a field trip to a real prairie, Vinton says they begin to sense the beauty of “a 360-degree sweep of nothing but grasslands, as far as the eye can see.” And, according to Vinton, they also begin to understand some of the prairie’s complexity beneath that seemingly simple surface.

“I try to get across to them the concept of a web of interactions, and the idea of a ‘keystone species,’ a plant or animal that keeps a portion of an ecosystem together.” Her students start examining that concept of the interconnectedness of living things — and seeing how that plays out on the prairie.

“There’s a native thistle in the Sandhills,” she continues, “and its numbers go up and down, but scientists don’t know why. There’s also a nasty, invasive thistle that is an exotic species, and it can be a pest. So, federal and state agencies introduced a European weevil in the early 1970s to destroy the exotic species. But just this year, a scientist, Dr. Svata Louda, from the University of Nebraska showed that the native thistle is being eaten, too. What did the native thistle do? Was/is it a keystone species? What else depends on the native thistle? If it declines, what will this mean to other species, to us?

“I try to emphasize there are biological reasons for biodiversity. My message is finding out what you’ve got before you decide to alter it.” A prairie can serve her students as a window on the planet: Here, perhaps for the first time, they are immersed in a world of hundreds of species, living — and dying — in harmony with their surroundings.

Early pioneers were both attracted to and intimidated by the American grasslands. With the constant
wind, storm patterns and extremes of heat and cold, the prairies presented a harsh environment. But their rugged beauty — undulating hills, often full of flowers; the bold spill of sun, and grasses rippled by the wind — made them captivating, too.

Soon the pioneers learned that, especially toward their eastern range, the prairies kept a secret: They harbored among the richest soils in the world. Vinton says such a discovery spelled doom for the tallgrass prairie, bordered by deciduous woodlands on the east and shortgrass prairie on the west. Now among the world’s most threatened biomes, less than 1 percent of tallgrass prairie — with its relatively dependable regime of rainfall — remains in the U.S. Such prairie long ago gave way to cropland, Vinton explains. The only places where tallgrass prairie survived unplowed were in cemeteries or along railroad rights of way.

Further west, in the Sandhills of Nebraska, though minus their original megafauna, the mixed-grass prairies have fared better, much of their great biodiversity intact. Although now grazed by cattle, not American bison, “the Sandhills have become less eroded with European settlement,” Vinton explains. Ironically, however, “some plants and animals in the Sandhills need disturbance,” because they have evolved over time with wind, water, animals — and maybe most importantly — fire. Settlers did not see this evolutionary process, and, to them, Vinton says, land in motion was “not good land — and fire to be feared. For them, the land needed to be tamed.” Fires were prevented, blowouts repaired. Gradually, ecology is teaching us that this may not be the way to preserve biodiversity, says the Creighton botanist.

In fact, “one of the major contributions from the field of ecology,” she says, “is the concept that natural systems are dynamic. Stability is not always good.” Today, she says, preserve managers are constructing some blowouts in the Sandhills, and leaving those that naturally emerge. “This idea of leaving the ‘natural disturbance regime’ intact is good news for the blowout penstemon.” Still, Vinton, with her roots in ranching and biodiversity, cautions against “turning the Sandhills into a huge area of bare, blowing sand. The land is valuable because it offers the ‘ecosystem service’ of providing forage for livestock.

“Transforming the whole area into penstemon habitat would destroy this dimension of the land — and perhaps endanger other species that don’t grow in blowouts.”

When left on their own, what services do these ecosystems provide? That’s a question Vinton encourages her students to explore. Just how much clean air does a prairie, for example, generate? How much clean water?
How much oxygen does it supply? What food and medicines might it provide? Contrast these ecosystem services to those of a monoculture — a cornfield, for example — and students begin to understand the trade-off.

“I’m not going to say a cornfield is bad. I eat. We all eat, and many of our major food items come from monocultures. But quantifying the contributions of a natural grassland is helpful. And this you do by studying it.”

Today, must the value of everything be reduced to what it produces for people? “I hate to lose that ‘knowledge for its own sake’ value of science,” Vinton admits. “But, today, with money tight, you often have to prove we’re getting something practical from what we are learning.”

She returns to the image of the blowout penstemon. “How can I relate the problem of the penstemon to myself, my students, WINDOW readers?”

“As a biologist, I value it because it’s rare. It’s endemic, found only here, in Nebraska.

“But what is its quantifiable value? Perhaps it could produce a drug for use; most drugs come from plants. On the other hand, how does it function in the ecosystem? Is it a keystone species — with many others connected to it?”

Vinton admits that some of the appeal of grasslands just can’t be quantified, reduced to what is simply practical.

Part of their appeal is intellectual, and much is aesthetic, even spiritual. “I like their freedom, their open spaces. Like us, they’re in motion,” she says.

Their rippling, dappled hills, the sky pressing close, is “the great American landscape, what we see in our mind’s eye when we conjure up a picture of America,” she says.

For all their quantifiable contributions, grasslands’ most important quality may be their wild, fresh beauty. That may be what finally saves them — and our planet — from destruction.

Less than 1 percent of native tallgrass prairies remain today. Most have succumbed to the plow.
Landmines

Legacy of Death

Photo essay by Don Doll, S.J.
Top: A grim game ...
Because children often encounter landmines, they must learn to identify them quickly in the field, hence this board game of recognition. Children often lose an arm, leg or a life to these remnants of war in Angola.

Far Left: Augusto Baptista Chimuna, 33, stands with his family outside of the tent where they have lived for four years. With the Angolan civil war raging, these IDPs (internally displaced persons) cannot return to their homes.

Above: A sampling of deactivated landmines found around Luena, Angola. The ordnance includes anti-tank mines (top row), 'bounding bettys' which leap into the air and have a wide killing radius, and anti-personnel mines.

Editor’s Note: Some of the photos in this story will be disturbing to the reader. Beyond the politics of the landmines issue is the truth of human suffering that Fr. Doll witnessed.

Up to 200 million of them are scattered across the earth, hidden in the soil of about 64 countries, mostly developing nations already ravaged by war. About two million more of the devices are installed each year. (Although in 1997 the U.S. agreed to destroy some of its stockpile, we still continue to produce others.)

In many developing nations, no one knows exactly where these frightening devices are placed; they can detonate at any time, anywhere, set off by the random brush of a foot,
often the foot of a child.

Many are about the size of a hockey puck and are cheap to make and to install, about $3 a piece. To remove them is a much more costly business, ranging up to $1,000 each. In many countries, removing them means scraping away the earth a centimeter at a time. “They’ll still be here in 100 years,” says one discouraged worker in Angola. It’s easy to lose heart: For every one that is removed, 20 more will be installed.

Their presence renders the land useless, as the people are afraid to disturb the soil. The economy suffers.

Below: De-miners clear a path through a minefield. Because of the intensity of the work, they work in teams, 45 minutes on and 45 minutes off. Every bottlecap has to be treated as a potential mine, its identity determined by touch.

Bottom: More than 200 people are employed by the Mine Advisory Group (MAG) to identify, mark and remove landmines so the local people can again plant crops.

Far Right: Outside of Luena, Angola. De-Miners destroy landmines and other unexploded devices.
Each day, about 150 people are killed or injured by them.

Anti-personnel landmines. Meant to kill and maim.

When Creighton priest/photographer Don Doll, S.J., journeyed to Angola last March, he saw the results of these terrible remnants of war:

Children with missing limbs, orphans, a young father or mother struck down in the prime of life. Here, the earth is riddled with 10 million landmines; that’s one for every person in the country. Of its population of 10 million, 70,000 Angolese are amputees.

The destruction wreaked by anti-personnel landmines has become the target of a worldwide crusade. In October, the International Campaign to Ban Landmines (ICBL) and its American coordinator Jody Williams were awarded the Nobel Peace Prize. In December in Ottawa, President
Clinton represented the only hold-out Western nation left to join a worldwide treaty to ban and clear all anti-personnel landmines.

In 1994 the Jesuit Refugee Service (JRS) adopted the goals of the International Campaign. The JRS strategy has been to accompany and serve those hurt by mines; help survivors tell their stories; include solid ethical reflection, and join forces with national campaigns.

President Clinton remains committed to the use of anti-personnel mines in the Demilitarized Zone between North and South Korea.

Pentagon officials believe that such weapons, meant to keep intact anti-tank mines, are essential to the defense of South Korea. Other U.S. opponents to the ban suggest options to signing the Ottawa treaty, including signing with reservations; signing the treaty and letting the U.S. Senate
Left: Tun Channareth, who works with the Jesuit Refugee Service in his native Cambodia, accompanied Jody Williams of the International Campaign to Ban Landmines and the Vietnam Veterans of America Foundation to accept the Nobel Peace prize in Oslo, Norway. Channareth helps other landmine victims build wheelchairs.

Far Left: Amputees try out their new prostheses in a rehabilitation center in Maputo, Mozambique.

Below: In Luena, a young man with his son attempts to read. More than 80 percent of the people in Angola are illiterate.

state any reservations or working with the United Nations on another treaty. Some even suggest the best answer is resolving the problem of the two Koreas.

“One thing about the landmines issue,” Fr. Doll said, “is that it is not an abstraction. The United States is the largest arms seller in the world. If the U.S. sells $20 billion worth of fighter planes, then the receiving country does not have those funds available for health care and education for their people. But that’s an abstract concept.

“With landmines, there’s no abstraction. You see what happens. You see the results ... I’ve never been to a country where there’s so little joy in children’s eyes.”
For several years, Michael Kuspa, 33, of Omaha worked full time in telemarketing, despite holding a business degree from the University of Indiana and having considerable retail experience.

Today, after completing an intensive six-month COBOL mainframe programming course at the year-old Creighton Institute for Information Technology and Management, he’s a computer programmer at First Data Resources, earning an excellent salary. He and his wife, Dori, are building an addition to their home and they’re excited about the future.

“This stretches me. I’m using my mind instead of my mouth,” Kuspa said. “With this training, it’s almost impossible not to get a job.”

Kuspa is an example of how the Institute is changing lives — an almost unexpected benefit of a program established primarily for other purposes.

According to Academic Vice President Charles Dougherty, Creighton had two major goals in starting the Institute, which is part of the College of Business Administration:
• To serve “the almost desperate need of the (Omaha) community for practical information systems skills.”
• To give Creighton an opportunity to interact with the business community on the “cutting edge of information systems issues.”

Dougherty said that the Institute has “done far more than we expected in terms of training people. It’s giving them the wherewithal to change their careers and their lives. It’s making Omaha a better community and allowing people to take advantage of the extraordinary opportunities here.”

No one, said Dougherty, could fail to be moved by the sight of people moving from low-income jobs to positions with a future.

“Our Institute does something very important for individuals, families and communities,” he said. “Our training provides benefits for the rest of peoples’ working lives.”

The Institute, said Director Michael Echols, exemplifies the tradition of Jesuit education — changing the world for the good by changing the lives of people.

Jesuit education “at its best,” said Dougherty, integrates values with the concrete realities of life — including technology.

“My sense is that the Jesuit tradition means being an ethical force for change. The most important change-agent today is technology.”

Echols said. Courses are taught year-round during the day, on afternoons, evenings and weekends and do not conform to the traditional academic calendar. Students can opt for a variety of instructional formats although most attend live classes at the Institute.

Currently about 190 students are enrolled in technology-based programs ranging from graduate courses in engineering delivered by satellite from major universities to the popular COBOL mainframe program. Course modules (portions of a course) also are available in disk format for study at home.

Nearly all of the Institute’s students are over 25, and 85 percent have some post-secondary education, Echols said. A few even have doctorates or law degrees. However many, like Kuspa, were underemployed or even unemployed before enrolling in the Institute because they lacked technological skills.

They were cooks, casino workers, homemakers and telemarketers. Graduate John Willmarth had two years of college and held an associate degree but worked repairing gambling equipment. He, too, has become a programmer at First Data Resources.

Although most students are from the Omaha area, the Institute also has served students from Michigan, New Jersey, New York, Florida, Texas and Arizona.

Students are almost desperately eager to master technological skills — the key to the future, said Echols.

“It’s a matter of their being able to transition to careers in growth areas,” he said.

The Institute, which has expanded once, is already outgrowing its quarters. The demand seems insatiable. Most students have jobs waiting for them at insurance, information, and manufacturing companies. Major companies and government agencies are sponsoring or supporting students.

Graduates of the COBOL mainframe computer programming course are in special demand as employers seek to solve the looming computer problems connected with the year
2000, Echols said. Demand is so strong that most graduates are getting jobs that pay far more than the anticipated $25,000-$30,000. Often there are upfront bonuses.

Graduates said they could hardly believe how easy it was to get a job compared to their pre-Institute employment-seeking experiences. “Getting a job was like going into a car dealership,” joked Gregory Eischeid, who also works at First Data. Employers were “all over” him with offers.

Eischeid, who received a degree in finance from Creighton in 1994 and has worked in banking, said that he’s thrilled with the opportunities his combined academic and technical education give him. First Data needs programmers who can think like the employees of the financial institutions which use its products, he said.

Echols said that students like Eischeid illustrate the need for Creighton to offer flexible, non-traditional programs such as the Institute provides. “This Institute is responding to a world where a person will have five or six careers in a lifetime. Knowledge is doubling every seven years,” he said. And the speed at which knowledge is doubling is becoming faster, he added. “People have to reinvest continuously in themselves.”

Private universities such as Creighton have an advantage in responding to today’s rapidly changing environment, he said. They’re less bureaucratic and can make changes more quickly.

“Society is being affected by information at an accelerating rate. The World Wide Web didn’t exist before 1993. Now it is part of our daily lives.”

Echols believes that Creighton has “a tremendous opportunity” to respond to the needs of people and communities affected by the shift to an information-based economy.

“Creighton was the first in Omaha to respond to the information systems needs of the community,” he said.

Response to the Institute has been enthusiastic.

Rod Moseman, vice president for economic development for the Greater Omaha Chamber of Commerce, said he has “great admiration” for the Institute and regards it as a major economic development asset for the city.

“Its entrepreneurial approach to meeting the demands of business is an important component for the expansion of local businesses and the attraction of new business,” he said.

Bob Sweeney, executive director of Applied Information Management Institute, praised Creighton and the Institute for “tapping an underserved market” with its COBOL program. He called the Institute “outstanding.” “We don’t need another master’s or
bachelor’s program,” he said. Instead, employers need people who are ready for jobs – many of them people who already have degrees.

Ultimately, said Echols, the combination of meeting the needs of the community and creating opportunities for people is what makes the Institute so exciting and important for Creighton. “The empowerment of people goes on here every day,” he said.

Institute graduates report little trouble finding jobs. Ten of the first 16 COBOL graduates are now programmers at Omaha-based First Data Resources, which processes credit and debit card transactions for financial institutions worldwide. Pictured above are Institute graduates and First Data employees Jean Hupp, front; middle, Susan Johnson, Michael Kuspa, James Murphy; back, Edward Mello, David Jensen, Scot Sonius, James Roberts, Gregory Eischeid.

Facts about the CU Institute

Profile of the Creighton Institute for Information Technology and Management:
• Established 1996
• Location: 120 Regency Parkway, Suite 115 (Regency Court shopping center)
• Course Offerings:
 – Master’s level courses via satellite from institutions such as Columbia University and the University of Notre Dame
 – Lessons packaged on computer disks in four- to eight-hour training modules, called Computer Based Training, which can be mailed anywhere
 – Traditional computer classes taught in person by instructors covering such topics as JAVA and GUI Design
• Most Popular Program:
 – A six-month class in COBOL programming which enables graduates to get a programming job immediately
• Number of Graduates (Nov. 1997): 34
• Total number of Students Served: 250
• Costs: Vary by program with a charge of $7,500 for the Mainframe COBOL Certificate
• Course Times: mornings, afternoons, evenings and weekends

For more information, call the Creighton Institute at (402) 399-0560, or contact the Institute at its web address: http://cinst.creighton.edu
Dr. Al Has Taught 18,000 Biology Students
by Robert U. Guthrie

It goes without saying, but... “I don’t like hair,” Dr. Allen B. Schlesinger told a cohort a short time after completing 45 years of teaching General Biology to perhaps 18,000 students.

“Al,” as he is known to his associates on the Creighton campus, sports a clean-shaven head that has attracted the camera of Creighton’s famed Jesuit photographer Don Doll, S.J., on several occasions.

Dr. Schlesinger’s baldness is certain to be the first thing you notice, but his intellect and flair for telling Creighton stories gives you the most lasting impression. You just can’t imagine what Al looks like with hair, so we’re providing a mid-1950s photo (there is confusion on the date) showing an out-of-character hirsute Al.

He stepped onto the Creighton campus in 1952, before he was Doctor Al, having just received his master of science degree from the University of Minnesota. He received the doctorate in 1957, majoring in zoology and minoring in biochemistry.

His vitae lists all the normal publications and research you would expect from a professor of biology, the level he attained in 1961 at Creighton. His major research centered on chicken embryos. Three times in his years at Creighton he served as chairman of the Biology Department.

It all pales in comparison to his lifelong love, teaching. For so many years he has taught the course that is the gateway to Creighton’s health sciences professional schools. In General Biology, he regularly lectured to a gathering of some 400 students hanging on his every word in the Rigge Lecture Hall.

Students along the way have pressed him to reconcile his fervent Catholicism with his questing scientific mind, and he doesn’t shy away from an answer; he sees no conflict between his God and his science, finding an order to the universe that fits every corner of belief and faith.

With his beautiful wife Julie, Allen brought four equally lovely daughters into the world and celebrated his Golden Anniversary with Julie in October of 1997. In his years at Creighton he has received many honors, including the Distinguished Service Award in 1979, showing yet another side of this complex man. When called upon by “his university” to do fund raising, Al stepped up to the plate in the mid-1980s.

In his earlier years at Creighton, Allen B. Schlesinger (the B. stands for Brian) led several lives, once spending summers at a “dude” ranch in Colorado, essentially living the life of a cowboy working at the ranch, which once was featured as the background for a movie called “Mr. Majestyk,” starring actor Charles Bronson. On another occasion, he served as a consultant to OPPD’s (Omaha Public Power District) Ft. Calhoun generating plant, involved in the study of the effect of the nuclear plant on the Missouri River.

In recent months, the affable doctor was struck by a disease that was difficult to diagnose and confounded even Dr. Schlesinger for some time. With an eventual diagnosis of myasthenia gravis, a neuromuscular disorder, treatment was started and Allen recently returned to his ebullient self.

A writer friend, once decrying the “inability of professors to express themselves,” said Al was different: “He has a soul.” In fact, searching for a career in his youth, Al considered writing as a profession. Now he can point to having done both.

A few years ago, he wrote a “textbook” on biology that he called “Explaining Life.” It is not a hefty tome, but it is remarkable for its insights into life and science, setting forth many of Al’s philosophies, which he regularly expounds in close conversation with friends outside the classroom.

Yes, Al did have hair at one time, as this mid-1950s photo proves.
Called the “working person’s lawyer” and one whose career has “focused on the poor,” Creighton Law alumnus Bob Pratt became Iowa’s 29th federal district judge this past fall.

Beginning his career as a staff attorney with the Legal Aid Society in 1973, Judge Pratt went on to build a practice that specialized in workers’ compensation, Social Security disability claims and personal injury and unemployment cases. Named the Iowa Bar’s 1983 “Volunteer Lawyer of the Year,” Judge Pratt has long maintained a significant pro bono practice.

Also in the fall, Creighton Law alumnus and Omaha attorney Joe Bataillon was installed as federal district judge for Nebraska. He has been called “an exceptional public citizen,” with “a record of substantial accomplishment” in the state.

The former chairman of the Nebraska Democratic Party was a trial attorney with Sodoro, Daly & Sodoro before being named to the federal post. With the firm since 1983, Judge Bataillon specialized in defending physicians and hospitals in medical malpractice lawsuits. He was a public defender for Douglas County from 1974 to 1980.

Creighton salutes these alumni for living in harmony with the Creighton credo and for the honor they bring to those who know them. Congratulations!

Hon. Joseph Bataillon, Law’74, U.S. District Court of Nebraska
Hon. Robert Pratt, Law’72, U.S. District Court for the Southern District of Iowa

Photo by Eric Francis
Photo by David Peterson. Copyright 1997 The Des Moines Register and Tribune Company. Reprinted with permission.